Sewing Machine embroidery

Meander

A meander is one of a series of regular sinuous curves, bends, loops, turns, or windings in the channel of a river, stream, or other watercourse. It is produced by a stream or river swinging from side to side as it flows across its floodplain or shifts its channel within a valley. A meander is produced by a stream or river as it erodes the sediments comprising an outer, concave bank (cut bank) and deposits this and other sediment downstream on an inner, convex bank which is typically a point bar. The result of sediments being eroded from the outside concave bank and their deposition on an inside convex bank is the formation of a sinuous course as a channel migrates back and forth across the down-valley axis of a floodplain. The zone within which a meandering stream shifts its channel across either its floodplain or valley floor from time to time is known as a meander belt. It typically ranges from 15 to 18 times the width of the channel. Over time, meanders migrate downstream, sometimes in such a short time as to create civil engineering problems for local municipalities attempting to maintain stable roads and bridges.

Irrotational flow: From Bernoulli's equations, high pressure results in low velocity. Therefore, in the absence of secondary flow we would expect low fluid velocity at the outside bend and high fluid velocity at the inside bend. This classic fluid mechanics result is irrotational vortex flow. In the context of meandering rivers, its effects are dominated by those of secondary flow.

The technical description of a meandering watercourse is termed meander geometry or meander planform geometry. It is characterized as an irregular waveform. Ideal waveforms, such as a sine wave, are one line thick, but in the case of a stream the width must be taken into consideration. The bankfull width is the distance across the bed at an average cross-section at the full-stream level, typically estimated by the line of lowest vegetation.

In contrast to sine waves, the loops of a meandering stream are more nearly circular. The curvature varies from a maximum at the apex to zero at a crossing point (straight line), also called an inflection, because the curvature changes direction in that vicinity. The radius of the loop is the straight line perpendicular to the down-valley axis intersecting the sinuous axis at the apex. As the loop is not ideal, additional information is needed to characterize it. The orientation angle is the angle between sinuous axis and down-valley axis at any point on the sinuous axis.

A meander has a depth pattern as well. The cross-overs are marked by riffles, or shallow beds, while at the apices are pools. In a pool direction of flow is downward, scouring the bed material. The major volume, however, flows more slowly on the inside of the bend where, due to decreased velocity, it deposits sediment.

Since the flow velocity is diminished, so is the centrifugal pressure. The pressure of the super-elevated column prevails, developing an unbalanced gradient that moves water back across the bottom from the outside to the inside. The flow is supplied by a counter-flow across the surface from the inside to the outside. This entire situation is very similar to the Tea leaf paradox. This secondary flow carries sediment from the outside of the bend to the inside making the river more meandering.

In the equilibrium theory, meanders decrease the stream gradient until an equilibrium between the erodibility of the terrain and the transport capacity of the stream is reached. A mass of water descending must give up potential energy, which, given the same velocity at the end of the drop as at the beginning, is removed by interaction with the material of the stream bed. The shortest distance; that is, a straight channel, results in the highest energy per unit of length, disrupting the banks more, creating more sediment and aggrading the stream. The presence of meanders allows the stream to adjust the length to an equilibrium energy per unit length in which the stream carries away all the sediment that it produces.

As the cut bank is undermined by erosion, it commonly collapses as slumps into the river channel. The slumped sediment, having been broken up by slumping, is readily eroded and carried toward the middle of the channel. The sediment eroded from a cut bank tends to be deposited on the point bar of the next downstream meander, and not on the point bar opposite it. This can be seen in areas where trees grow on the banks of rivers; on the inside of meanders, trees, such as willows, are often far from the bank, whilst on the outside of the bend, the tree roots are often exposed and undercut, eventually leading the trees to fall into the river.